edexcel ${ }^{\text {: }}$

Mark Scheme (Results)
Summer 2014

Pearson Edexcel GCE in Statistics 2
(6684/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere
Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014
Publications Code UA040123
All the material in this publication is copyright
© Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- - or d... The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme	Marks
(a)	$\begin{aligned} \int_{0}^{9} c\left(81-t^{2}\right) \mathrm{d} t & =1 \\ c\left[81 t-\frac{t^{3}}{3}\right]_{0}^{9} & =1 \\ c\left[81 \times 9-\frac{9^{3}}{3}\right] & =1 \\ 486 c & =1 \\ c & =\frac{1}{486} \end{aligned}$	M1 A1 M1d A1cso
(b)	$\begin{aligned} \mathrm{F}(t) & =\frac{1}{486} \int_{0}^{t} 81-x^{2} \mathrm{~d} x \\ & =\frac{1}{486}\left[81 t-\frac{x^{3}}{3}\right]_{0}^{t} \\ & =\frac{t}{6}-\frac{t^{3}}{1458} \\ \mathrm{~F}(t) & =\left\{\begin{array}{cc} 0 & t<0 \\ \frac{t}{6}-\frac{t^{3}}{1458} & 0 \leq t \leq 9 \\ 1 & t>9 \end{array}\right. \end{aligned}$	M1 A1cso (2)
(c)	$\begin{aligned} \mathrm{P}(T>3) & =1-\left(\frac{3}{6}-\frac{3^{3}}{1458}\right) \\ & =\frac{14}{27} \text { or awrt } 0.519 \end{aligned}$	M1 A1 (2)
(d)	$\begin{aligned} \mathrm{P}(T>7 \mid T>3) & =\frac{0.068587}{0.5185} \\ & =\frac{25}{189} \text { or awrt } 0.132 \end{aligned}$	M1A1ft A1
(e)	${ }^{3} C_{2}(0.5185)^{2}(1-0.5185)=\frac{2548}{6561}$ or awrt 0.388/0.387	M1A1ftA1 $\begin{array}{r} (3) \\ {[14]} \end{array}$

Question Number	Scheme Marks
4. (a) (i) (ii)	
(b)	$1-\mathrm{P}(0)$ $=0.8$ or $\mathrm{P}(0)=0.2$ M 1 $(1-p)^{20}$ $=0.2$ $1-p$ $=0.9227$ p $=0.0773$ A1 $\frac{3}{200}(90-x)$ $=0.0773$ M1 x $=84.84$ x $=85$ A1cao (4)
(c)	$X-$ successes $\sim \mathrm{B}(100,0.975)$ B1 $Y-$ not successes $\sim \mathrm{B}(100,0.025)$ M1A1 $Y \sim \mathrm{Po}(2.5)$ M1A1 (5) $\mathrm{P}(Y \leq 5)=0.958$
	Notes [14]
(a) (i) (ii) (b) (c)	B1 writing or using $p=0.75$ or $p=0.25$ anywhere in (a)(i) or (a)(ii) M1 writing or using $(p)^{6}(1-p)^{4}{ }^{10} C_{6}$ or writing for $p=0.75, \mathrm{P}(X \leq 6)-(X \leq 5)$ or for $p=0.25, \mathrm{P}(X \leq 4)-\mathrm{P}(X \leq 3)$ or correct answer. M1 writing $\mathrm{B}(10,0.75)$ and writing or using $\mathrm{P}(X=8)+\mathrm{P}(X=9)+\mathrm{P}(X=10)$ oe or writing $\mathrm{B}(10,0.25)$ and writing or using $\mathrm{P}(Y \leq 2)$. Using correct Binomial must be shown by $(0.75)^{n}(0.25)^{10-n}$ or a correct answer. M1 for writing or using $1-\mathrm{P}(0)=0.8$ or $\mathrm{P}(0)=0.2$ or $(1-p)^{20}=0.2$. Allow any inequality sign. A1 awrt 0.0773 or awrt 0.923. M1 subst in $\frac{3}{200}(90-x)$ for $p \mathbf{N B}$ this may be substituted in earlier for p. Allow for $\frac{3}{200}(90-x)=k$ where $0<k<1 k \neq 0.8$ or 0.2 Allow any inequality sign A1 condone $x \geq 85$. Do not allow $\mathrm{x} \leq 85$. B1 writing or using 0.975 or 0.025 , may be implied by $\operatorname{Po}(2.5)$ M1 using Po approximation A1 Po(2.5) M1 writing or using $\mathrm{P}(Y \leq 5)$ A1 awrt 0.958 SC use of normal approximation can get B1 M0A0M1A0 B1 writing or using 0.975 or 0.025 implied by normal with mean 97.5 or answer of 0.973 M1 for awrt 0.973

Question Number	Scheme Marks
5.(a)	n is large and p close to 0.5 B1B1 (2)
(b)	There would be no pea seeds left \quad B1 (1)
(c)	$\mathrm{H}_{0}: p=0.55 \mathrm{H}_{1}: p \neq 0.55$ B1 (1)
(d)	
	Notes
(a) (b) (c) (d)	B1 accept $n>50$ (or any number bigger than 50) B1 p close to 0.5 NB Do not accept $n p>5, n q>5$. Must have the idea of no peas left. They must mention either pea or seeds. B1 both hypotheses correct. Must use p or π and 0.55 oe. Accept the hypotheses in part (d). B1 correct mean and Var, may be seen in the standardiation formula as 121 and $\sqrt{54.45}$ or 7.38 to 2dp or implied by a correct answer M1 for attempting a continuity correction (Method 1:135/85 ± 0.5 / Method 2: $x \pm 0.5$) M1 for standardising using their mean and their standard deviation and using either Method 1 [134.5, 135, 135.5, 85, 85.5 or 84.5 accept \pm z.] Method 2 [$(x \pm 0.5)$ and equal to a $\pm z$ value] A1 correct z value awrt ± 1.83 or $\pm \frac{134.5-121}{\sqrt{54.45}}\left(\frac{85.5-99}{\sqrt{54.45}}\right)$ or $\pm \frac{x-0.5-121}{\sqrt{54.45}}=1.96$ $\left(\pm \frac{x+0.5-99}{\sqrt{54.45}}=1.96\right) \text { or(allow } 1.6449 \text { if } 1 \text { tail test in (c)) }$ A1 awrt $0.0336 / 0.0337$ or awrt 136 (allow 126 if one tail test in (c)) or a comparison of awrt1.83 with 1.96 (1.6449) M1 A correct statement. Accept H_{0}, oe if a 2-tailed test in (c), reject H_{0}, oe if a 1-tailed test in (c). Allow for a correct contextual statement. Do not allow contradictions of noncontextual statements. A1 A correct contextual statement to include words in bold/underlined for a 2-tailed test. This is not a follow through mark. NB if finding $\mathrm{P}(X=135)$ they can get B 1 M 1 M 1 A 0 A 0 M 0 A 0

Question Number	Scheme	Marks
6. (a)	$\begin{aligned} \mathrm{E}(X) & =\int_{0}^{1} \frac{2 x^{2}}{9} \mathrm{~d} x+\int_{1}^{4} \frac{2 x}{9} \mathrm{~d} x+\int_{4}^{6} \frac{2 x}{3}-\frac{x^{2}}{9} \mathrm{~d} x \\ & =\left[\frac{2 x^{3}}{27}\right]_{0}^{1}+\left[\frac{2 x^{2}}{18}\right]_{1}^{4}+\left[\frac{x^{2}}{3}-\frac{x^{3}}{27}\right]_{4}^{6} \\ & =\left[\frac{2}{27}\right]+\left[\frac{32}{18}-\frac{2}{18}\right]+\left[4-\frac{80}{27}\right] \\ & =2 \frac{7}{9} \text { or awrt } 2.78 \end{aligned}$	M1 A1 M1d A1 (4)
(b)	$\mathrm{F}(x)=\left\{\begin{array}{cc} 0 & x<0 \\ \frac{x^{2}}{9} & 0 \leq x \leq 1 \\ \frac{2 x}{9}-\frac{1}{9} & 1<x<4 \\ \frac{2 x}{3}-\frac{x^{2}}{18}-1 & 4 \leq x \leq 6 \\ 1 & x>6 \end{array}\right.$ $1^{\text {st }}$ M1 For $1<x<4, F(x)=\int_{1}^{x} \frac{2}{9} \mathrm{~d} x+\frac{1}{9}$ $2^{\text {nd }}$ M1 For $4 \leq x \leq 6, \mathrm{~F}(x)=\int_{4}^{x} \frac{2}{3}-\frac{x}{9} \mathrm{~d} x+\frac{7}{9}$ or use +C and $\mathrm{F}(6)=1$	B1 M1A1 M1 A1 B1
(c)	$\begin{aligned} & \mathrm{F}(x)=0.5 \\ & \frac{2 m}{9}-\frac{1}{9}=0.5 \\ & m=2.75 \end{aligned}$	M1 A1ft A1 (3)
(d)	Median < mean therefore positive skew Or Mean \approx median therefore no skewness	M1A1cao (2) [15]

