

Mark Scheme (Results)

Summer 2014

Pearson Edexcel GCE in Statistics 2 (6684/01)

 ${\it PMT}$

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014
Publications Code UA040123
All the material in this publication is copyright
© Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method
 (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Question	Scheme	Marks
Number 1.		
(a)	Po(9)	B1
	2-907	
(i)	$P(X \le 7) - P(X \le 6) = 0.3239 - 0.2068$ $\frac{e^{-9}}{7!}$	M1
	= 0.1171	A1
	$\mathbf{p}(\mathbf{y} > 10) = 1 \cdot \mathbf{p}(\mathbf{y} < 0)$	
(ii)	$P(X \ge 10) = 1 - P(X \le 9)$	M1
	= 1 - 0.5874	A 1
	= 0.4126	A1 (5)
(b)	Po(1.5)	B1
(5)	P(next patient before $11:45$) = 1- P(0)	M1
	$= 1 - e^{-1.5}$	
	= 0.7769	A1
		(3)
	Notes	[8]
(a) (i)	B1 Po(9) written or used in either (i) or (ii)	
(4)		
	M1 writing $P(X \le 7) - P(X \le 6)$ or $\frac{e^{-\lambda} \lambda^7}{7!}$	
	This may be implied by 0.3239 – 0.2068	
	The state of the s	
	A1 awrt 0.117	
	M1 writing $1 - P(X \le 9)$	
(ii)	This may be implied by $1 - 0.5874$.	
	This may be implied by 1 – 0.3874.	
	A1 awrt 0.413	
(b)	B1 Po(1.5) written or used	
	M1 writing or using $1 - P(0)$ or $1 - e^{-\lambda}$.	
	This may be implied by $1 - 0.2231$	
	A1 awrt 0.777	
<u> </u>		

Question Number	Scheme	Marks
2.	(⁹ (2).	
(a)	$\int_0^9 c\left(81 - t^2\right) \mathrm{d}t = 1$	M1
	$c\left[81t - \frac{t^3}{3}\right]_0^9 = 1$	A1
	$c\left[81\times9-\frac{9^3}{3}\right]=1$	M1d
	$486c = 1$ $c = \frac{1}{486}$	A1cso (4)
(b)	$F(t) = \frac{1}{486} \int_0^t 81 - x^2 dx$	M1
	$= \frac{1}{486} \left[81t - \frac{x^3}{3} \right]_0^t$	
	$=\frac{t}{6} - \frac{t^3}{1458}$	
	$F(t) = \begin{cases} 0 & t < 0 \\ \frac{t}{6} - \frac{t^3}{1458} & 0 \le t \le 9 \\ 1 & t > 9 \end{cases}$	Alcso
		(2)
(c)	$P(T > 3) = 1 - \left(\frac{3}{6} - \frac{3^3}{1458}\right)$	M1
	$=\frac{14}{27}$ or awrt 0.519	A1
	21	(2)
(d)	$P(T > 7 T > 3) = \frac{0.068587}{0.5185}$	M1A1ft
	$=\frac{25}{189}$ or awrt 0.132	A1
	2548	(3)
(e)	$^{3}C_{2}(0.5185)^{2}(1-0.5185) = \frac{2548}{6561}$ or awrt 0.388/0.387	M1A1ftA1
		(3) [14]

	Notes
(a)	1 st M1 Attempting to integrate, For attempt $x^n \rightarrow x^{n+1}$ and c must remain as c or
(4)	1/486. Ignore limits
	1 st A1 Correct integration. Ignore limits.
	2 nd M1 dependent on previous M being awarded.
	Putting = 1 and substitution of 9 as a limit seen. Need at least one intermediate step before getting 486
	or substitution of 1/486 and 9 seen and leading to an answer of 1
	A1 $c = \frac{1}{486}$ cso or if verifying, the statement $c = \frac{1}{486}$
(b)	M1 Attempting to integrate with correct limits or $\int f(t)dt + C$ and $F(0) = 0$ or $F(9) = 1$.
	Subst in c at some point
	A1 F(t) must be stated and cso. Condone use of $<$ instead of \le etc.
(c)	M1 using or writing 1 – F(3) or $\frac{1}{486} \int_{3}^{9} 81 - x^{2} dx$ or 1 – P(X \le 3)
	100
	A1 awrt 0.519
	a probability
(d)	M1 $\frac{a \ probability}{their}$
	where $0 < a \text{ probability} < their (c) < 1$. If a probability $\geq their (c)$, give M0.
	50
	A1ft $\frac{729}{their}$ or $\frac{awrt0.0686}{their}$ (c)
	A1 $\frac{25}{189}$ or awrt 0.132
(e)	M1 Allow $(their '0.5185')^2 (1-their '0.5185')$
	A1ft Allow ${}^{3}C_{2}$ (their '0.5185') ${}^{2}(1 - their '0.5185')$
	A1 awrt 0.388 or 0.387

Question Number	Scheme	Marks
3. (a)	Any two of	
	Emails occur at a constant rate	B1B1d (2)
(b)	$X \sim \text{Po}(4)$ P(X = 0) = 0.0183	
	$P(X \ge 9) = 0.0214$	
	$CR X = 0; X \ge 9$	B1B1 (2)
(c)	0.0183 + 0.0214 = 0.0397 or $3.97%$	M1A1 (2)
(d)	8 is not in the critical region or $P(X \ge 8) = 0.0511$ therefore there is evidence that the company's claim is true	M1 A1ft
(e)	$H_0: \lambda = 6$ (or $\lambda = 2$) $H_1: \lambda < 6$ (or $\lambda = 2$) allow λ or μ Po(6)	(2) B1 M1
	$P(X \le 2) = 0.0620$ CR $X \le 2$	A1
	0.0620 < 0.10	M1 don
	Reject H ₀ or Significant. There is evidence at the 10% level of significance that the mean rate/number/amount of emails received is lower/ has decreased/is less.	M1 dep. A1 cso
	Or <u>fewer emails</u> are received	(5)
	Nidor	[13]
(a)	Notes B1 any correct statement with context of emails in	
	B1d Dependent on previous B1. Any correct statement, need not have context SC for 2 correct statements without context B1 B0	
(b)	B1 $X = 0$ or $X \le 0$ Allow any letter.	
	B1 $X \ge 9$ or $X > 8$ Allow any letter. SC if write correct CR's as probability statements award B1 B0	
(c)	For these 2 marks ignore any union sign (\bigcirc) or intersection sign (\bigcirc) M1 adding their probabilities of 'their' critical regions if sum gives a probabilit or award if a correct answer given	y less than 1
(d)	A1 awrt 0.0397 M1 correct reason ft their CR. Do not allow non-contextual contradictions. A1 correct conclusion for their CR. Allow conclusion in context of emails are	
(e)	received at a rate of 2 every 5 mins B1 both hypotheses correct, must have λ or μ and either 2 or 6. M1 using Po(6) may be implied by correct answer. A1 0.062 or $X \le 2$	
	M1 dependent on previous method being awarded. Do not allow conflicting not statements. Follow through their hypotheses.	n-contextual

Question Number	Scheme	Marks
4. (a)	X is the random variable the Number of successes, $X \sim B(10, 0.75)$	B1
(i)	$P(X=6) = (0.75)^6 (0.25)^{4} {}^{10}C_6 \text{ or } P(X \le 6) - P(X \le 5)$	M1
(ii)	= 0.145998 awrt 0.146 Using $X \sim B(10, 0.75)$	A1
(11)	$P(X \ge 8) = P(X = 8) + P(X = 9) + P(X = 10)$	M1
	$= (0.75)^8 (0.25)^{2} {}^{10}C_8 + (0.75)^9 (0.25)^{1} {}^{10}C_9 + (0.75)^{10}$	1.11
		A 1
	= 0.52559 awrt 0.526	A1
	Using $Y \sim B(10, 0.25)$ and $P(Y \le 2) = 0.5256$	(5)
(b)	1 - P(0) = 0.8 or $P(0) = 0.2$	M1
	$(1-p)^{20} = 0.2$	
	1 - p = 0.9227	
	p = 0.0773	A1
	$\frac{3}{200}(90-x) = 0.0773$	M1
	x = 84.84	
	x = 85	A1cao (4)
(c)	$X - \text{successes} \sim B(100, 0.975)$	B1
	Y – not successes ~B(100, 0.025) Y~Po(2.5)	M1A1
	$P(Y \le 5) = 0.958$	M1A1 (5)
	Notes	[14]
(a)	B1 writing or using $p = 0.75$ or $p = 0.25$ anywhere in (a)(i) or (a)(ii)	
(i)	M1 writing or using $(p)^6 (1-p)^{4} {}^{10}C_6$ or writing for $p = 0.75$, $P(X \le 6) - (X \le 6)$	≤5)
(ii)	or for $p = 0.25$, $P(X \le 4) - P(X \le 3)$ or correct answer. M1 writing B(10, 0.75) and writing or using $P(X = 8) + P(X = 9) + P(X = 10)$	0) oe
	or writing B(10, 0.25) and writing or using $P(Y \le 2)$.	
	Using correct Binomial must be shown by $(0.75)^n (0.25)^{10-n}$ or a correct answer.	wer.
(b)	M1 for writing or using $1 - P(0) = 0.8$ or $P(0) = 0.2$ or $(1-p)^{20} = 0.2$. Allow any	inequality
	sign. A1 awrt 0.0773 or awrt 0.923.	
	M1 subst in $\frac{3}{200}(90-x)$ for p NB this may be substituted in earlier for p .	
	Allow for $\frac{3}{200}(90-x) = k$ where $0 < k < 1$ $k \ne 0.8$ or 0.2 Allow any inequality	ity sign
	A1 condone $x \ge 85$. Do not allow $x \le 85$.	
(c)	B1 writing or using 0.975 or 0.025, may be implied by Po(2.5)	
	M1 using Po approximation	
	A1 Po(2.5) M1 writing or using $P(Y \le 5)$	
	M1 writing or using $P(Y \le 5)$ A1 awrt 0.958	
	SC use of normal approximation can get B1 M0A0M1A0	
	B1 writing or using 0.975 or 0.025 implied by normal with mean 97.5 or answ	er of 0.973
	M1 for awrt 0.973	

Question Number	Scheme	Marks	
5.(a)	n is large and p close to 0.5	B1B1 (2)	
(b)	There would be no pea seeds left	B1 (1)	
(c)	H_0 : $p = 0.55$ H_1 : $p \neq 0.55$	B1 (1)	
(d)	X~N(121, 54.45)	B1	
	$P(X \ge 134.5) = P\left(Z \ge \frac{134.5 - 121}{\sqrt{54.45}}\right) \text{or } \pm \frac{x - 0.5 - 121}{\sqrt{54.45}} = 1.96$ $= P(Z \ge 1.8295)$	M1M1A1	
	= 1 - 0.9664		
	= 0.0336/0.0337 x = 135.96	A1	
	Accept H ₀ not in CR, not significant The <u>company's claim</u> is justified or <u>55</u> % of its pea <u>seeds germinate</u>	M1 A1cso (7)	
	Alternative X~N(99, 54.45)	B1	
	$P(X \le 85) = P\left(Z \le \frac{85.5 - 99}{\sqrt{54.45}}\right) \text{ or } \pm \frac{x + 0.5 - 99}{\sqrt{54.45}} = 1.96$	M1 M1 A1	
	$= P(Z \ge 1.8295)$ $= 1 - 0.9664$ $= 0.0336/0.0337$ $x = 107.5$		
	Accept H ₀ not in CR, not significant The <u>company's claim</u> is justified <u>or 55</u> % of its pea <u>seeds germinate</u>	M1 A1cso [11]	
(-)	Notes		
(a)	B1 accept $n > 50$ (or any number bigger than 50) B1 p close to 0.5 NB Do not accept $np > 5$, $nq > 5$.		
(b)	Must have the idea of no peas left. They must mention either pea or seeds .		
(c)	B1 both hypotheses correct. Must use p or π and 0.55 oe. Accept the hypothese	s in <u>part (d</u>).	
(d)	B1 correct mean and Var, may be seen in the standardiation formula as 121 and $\sqrt{54.45}$ or		
	7.38 to 2dp or implied by a correct answer M1 for attempting a continuity correction (Method 1:135/85 ± 0.5 / Method 2:x ± 0.5) M1 for standardising using their mean and their standard deviation and using either Method 1 [134.5, 135, 135.5, 85, 85.5 or 84.5 accept ± z.] Method 2 [(x ± 0.5) and equal to a ± z value]		
	A1 correct z value awrt ± 1.83 or $\pm \frac{134.5 - 121}{\sqrt{54.45}} \left(\frac{85.5 - 99}{\sqrt{54.45}} \right)$ or $\pm \frac{x - 0.5 - 1}{\sqrt{54.45}}$	$\frac{121}{5} = 1.96$	
	$\left(\pm \frac{x + 0.5 - 99}{\sqrt{54.45}} = 1.96\right)$ or (allow 1.6449 if 1 tail test in (c))		
	A1 awrt 0.0336/0.0337 or awrt 136 (allow 126 if one tail test in (c)) or a compa awrt1.83 with 1.96 (1.6449)		
	M1 A correct statement. Accept H ₀ , oe if a 2-tailed test in (c), reject H ₀ , oe if a in (c). Allow for a correct contextual statement. Do not allow contradictions of contextual statements.		
	A1 A correct contextual statement to include words in bold/underlined for a 2-t This is not a follow through mark.	ailed test.	
	NB if finding $P(X = 135)$ they can get B1 M1 M1 A0 A0 M0 A0		

Question Number	Scheme	Marks
6.		
(a)	$E(X) = \int_0^1 \frac{2x^2}{9} dx + \int_1^4 \frac{2x}{9} dx + \int_4^6 \frac{2x}{3} - \frac{x^2}{9} dx$	M1
	$= \left[\frac{2x^3}{27}\right]_0^1 + \left[\frac{2x^2}{18}\right]_1^4 + \left[\frac{x^2}{3} - \frac{x^3}{27}\right]_4^6$	A1
	$= \left[\frac{2}{27}\right] + \left[\frac{32}{18} - \frac{2}{18}\right] + \left[4 - \frac{80}{27}\right]$	M1d
	$=2\frac{7}{9}$ or awrt 2.78	A1 (4)
		(4)
	$\frac{x^2}{2}$ $0 \le x \le 1$	B1
		M1A1
(b)	$F(x) = \begin{cases} \frac{2x}{3} - \frac{1}{3} & 1 < x < 4 \end{cases}$	WIIAI
		M1 A1
	$F(x) = \begin{cases} \frac{x^2}{9} & 0 \le x \le 1 \\ \frac{2x}{9} - \frac{1}{9} & 1 < x < 4 \\ \frac{2x}{3} - \frac{x^2}{18} - 1 & 4 \le x \le 6 \end{cases}$	B1
	1st M1 For $1 < x < 4$, $F(x) = \int_{1}^{x} \frac{2}{9} dx + \frac{1}{9}$	
	2^{nd} M1 For $4 \le x \le 6$, $F(x) = \int_4^x \frac{2}{3} - \frac{x}{9} dx + \frac{7}{9}$ or use +C and $F(6) = 1$	
	J4 3 9 9	(6)
(c)	F(x) = 0.5	(6) M1
	$\frac{2m}{9} - \frac{1}{9} = 0.5$	
		A1ft
	m = 2.75	A1 (2)
(d)	Median < mean therefore positive skew	M1A1cao
(u)	Or Mean ≈ median therefore no skewness	(2)
		[15]
l		1 !

	Notes	
(a)	M1 using $\int xf(x)dx$ ignore limits. Must have at least one $x^n \to x^{n+1}$	
	They must add the 3 parts together. Do not allow division by 3. A1 all integration correct; ignore limits M1 dependent on previous M being awarded. Subst in correct limits – no need to see zero substituted.	
	A1 $2\frac{7}{9}$ oe or awrt 2.78	
(b)	B1 for 2^{nd} line- allow use of $<$ instead of \le	
	M1 For $1 < x < 4$, $F(x) = \int_{1}^{x} \frac{2}{9} dx + \frac{1}{9}$. Limits are needed.	
	or use $F(x) = \int_1^x \frac{2}{9} dx + \text{their } F(1) \text{ need limits}$	
	or use "their $F(1)$ " = $\int \frac{2}{9} dx + C$ and subst $x = 1$ into RHS	
	or use "their $F(4)$ " = $\int \frac{2}{9} dx + C$ and subst $x = 4$ into RHS	
	A1 for 3^{rd} line allow use of \leq instead of $<$	
	M1 For $4 \le x \le 6$, $F(x) = \int_4^x \frac{2}{3} - \frac{x}{9} dx + \frac{7}{9}$. Limits are needed.	
	or use $F(x) = \int_4^x \frac{2}{3} - \frac{x}{9} dx + \text{their } F(4)$. Limits are needed.	
	or use "their $F(4)$ " = $\int \frac{2}{3} - \frac{x}{9} dx + C$ and subst $x = 4$ into RHS	
	or use $1 = \int \frac{2}{3} - \frac{x}{9} dx + C$ and subst $x = 6$ into RHS	
	A1 for 4^{th} line allow use of < instead of \leq B1 for first and last line - allow use of \leq instead of $<$ and \geq instead of $>$ and	
	"otherwise" for one of $x < 0$ and $x > 6$	
(c)	M1 putting any one of their lines = 0.5 A1their 3^{rd} line = 0.5	
	A1 2.75	
(d)	M1 reason must match their values / a correctly shaped and labelled sketch. Must compare the median and mean, ignore references to mode	
	A1 no ft Correct answer only from correct values of the mean and median or a	
	correct and fully labelled sketch.	

PMT